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How Do You Define a 
Quark Distribution?

ψα(r) ψ̄β(0)

ψα(r) U [0, r] ψ̄β(0)

p

k

[ Γ ]

p
k

ψ(r)

rT

r−

ψ̄(0)

U [0, r]

ψ(r)

rT

r−

ψ̄(0)

U [0, r]

p

k

q
k + q

p

k

q
k + q

pH



Apr. 2, 2015 4 / 34Matthew D. Sievert

Counting the Number of Quarks
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The simplest thing:    Number operator in a hadronic state

Volume factor normalizes plane-wave states

In terms of the quark fields:
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The Parton Model of DIS
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The quark distribution is always a part of a larger 
process, like Deep Inelastic Scattering.

e+ h ! e+X

In DIS with Bjorken kinematics, 

the struck quark moves at the speed of light along 
the       axis.

Q2, s ! 1 xB =
Q

2

s+Q

2
= const

x

�

ψ(r)
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➡  Photon couples to the number of unpolarized 
 quarks with an effective vertex �+

➡  The separation between the quark fields is 
 lightlike along the       axis.x

�

dN

dx

➡  DIS measures a one-dimensional distribution
 of quarks 

vertex for 
unpolarized quarks
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The Naive Quark Distribution
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Collinear quark fields

[ Γ ]

p
k

Other effective vertices     can couple to different quark 
spins:  (e.g.,    DIS)

�

�+= Unpolarized:

�+�5 = Longitudinal:

�+�j
?�

5= Transverse:

⌫
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Ū�(k)�
+
�

j
?�

5
U�(k) = 2xp+[�j

?]��



Apr. 2, 2015 7 / 34Matthew D. Sievert

Gauge Invariance
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The naive quark number operator is not gauge 
invariant:

 ̄�(0)  ↵(r) !  ̄�(0)S
�1(0) S(r) ↵(r)

The struck quark is not free; it moves in the gauge 
field of the target:

U [0, r] = P exp

"
i

Z 0�

r�
dz�T aA+a

(0

+, z�, 0?)

#
ψα(r) U [0, r] ψ̄β(0)

p

k

The direction is fixed by factorization of the  
quark distribution from the physical process.

The dressed operator is gauge invariant:  ̄�(0)U [0, r] ↵(r)

➡   ...but it is no longer purely a quark operator.
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Collinear Quark Distribution Functions

•  The gauge link can be gauged away by choosing  A+ = 0

The proper gauge-invariant quark correlator is

from which we can project the distributions of polarized quarks:
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Unpolarized Distribution

Helicity Distribution

Transversity Distribution

Is it still a distribution of quarks?  Or is it contaminated by gluons?

➡  Recover the naive quark number interpretation. 
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What About the Transverse Momentum?
For Semi-Inclusive Deep Inelastic Scattering (SIDIS),
we can study the distribution as a function of 
transverse momentum.

p
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e+ h ! e+ h0 +X
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It’s easy to define an “unintegrated quark distribution”:

...but the machinery works very differently under the hood.

•  Sensitive to the transverse momentum 
dependence (TMD) in the quark distribution.

•  Also sensitive to the TMD fragmentation 
process.
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The Importance of the Glue
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pHFixing the transverse momentum separates the 
quark fields in the transverse plane.

•  The “future-pointing” color flow is still fixed
from the factorization of SIDIS.

The gauge link is now a highly nontrivial “staple”:

•  The two light-like legs are connected by a 
transverse gauge link at infinity.

•  Because of the transverse separation, the gauge
link is free to flow all the way to “light-cone 
infinity.”

U [0, r] = U0? [0
�,1�] U?[~0?,~r?] Ur? [1�, r�]

•  The gauge link cannot be fully gauged away, even with A+ = 0

•  It carries physical information about the extra transverse
 momentum acquired from the color Lorentz force. Burkardt, Phys. Rev. D88 (2013)
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Non-Universality

The dependence on the direction of the gauge link violates universality.

• PT symmetry, for example, is an exact symmetry of the collinear PDF’s.

• But for the TMD distributions, PT symmetry alters the trajectory of the gauge link 
from future-pointing to past-pointing.

• The TMD distributions measured in Semi-Inclusive Deep Inelastic Scattering can 
differ by a sign from the ones measured in the Drell-Yan process. 
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The Quark TMD’s

At leading order, there are 8 independent quark TMD parton distributions:
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The Power of the
High-Density Limit
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Figure 3.16: Plot of the phase-space distribution kTφWW (kT ) using (3.104). The kT ∼
Qs behavior in the saturation regime is given by (3.107) (blue dashed curve); the large-
kT asymptotics are given by (3.105) (red dash-dotted curve); and a smooth interpolation
between the two limits has been constructed by hand (black solid curve). The interpolation
should only be considered schematic; a calculation of the next subleading term of (3.105),
for example, demonstrates that the full solution should approach the 1/kT asymptotics from
above.

e.g. [64–66,68,114–118]). The nonlinear effects of multiple gluon scattering have shifted the

low-kT gluons up in momentum and depleted the distribution in the far infrared. The satu-

ration scale Qs is a measure of the density of the system, scaling with the number of charges

as Q2
s ∝ T (b) ∼ A1/3, so by increasing the density of charges, we further deplete the infrared

region. This leads to a profound conclusion: since Qs emerges as a dynamical infrared cut-

off that increases with the density of the system, for a system of sufficient density that

Q2
s # Λ2

QCD, the physics of high-energy scattering can be made perturbative! Indeed, cal-

culations of the scale at which the coupling αs runs in typical high-energy collisions confirm

that they are proportional to Qs (see, e.g. [119]). Thus, the emergent physics of saturation

provides a well-defined resummation of QCD itself in which high-energy scattering becomes

perturbative and classical fields dominate:

A1/3 # 1 Q2
s # Λ2

QCD αs(Q
2
s)$ 1 α2

sA
1/3 ∼ O (1) . (3.108)

Thus the CGC approach, characterized by the Glauber-Gribov-Mueller and McLerran-

Venugopalan formalisms, is a powerful tool which can bring high-energy, high-density

124
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High Density, Classical Fields

A � 1Consider a heavy nucleus with a large number of nucleons 
which moves high energy along the      axis.x

+

When                             , the interaction strength 
becomes          and the projectile effectively propagates 
through the classical gluon field of the nucleus.

↵2
sA

1/3 ⇠ O(1)
O(1)

A projectile has a low probability           to interact with 
any nucleon, but this is enhanced by the large number     
of nucleons at a given impact parameter.

⇠ ↵2
s

A1/3

The nucleus may have a low 3-dimensional density, but 
when the many nucleons are Lorentz-contracted, they 
generate a large 2-dimensional density. ↵2

s

⇥A1/3



Apr. 2, 2015 15 / 34Matthew D. Sievert

The McLerran-Venugopalan Model

•  The typical transverse momentum a projectile acquires 
from crossing the nucleus defines the saturation scale 

A

+a(x+
, x

�
, ~x?) =

g

2⇡
T

a
�(x�) ln(xT⇤)

• In Feynman gauge, the classical field of each nucleon is 
localized along the      axis:

A1/3

δ(x−)x

�

• The nucleons have a small but finite separation in      , so 
each nucleon’s color field is generated independently.

x

�

• When the projectile crosses the nucleus, it undergoes a 
random walk in the color space of the nucleons and in 
the transverse momentum the nucleon field delivers.

Qs

Q2
s(~b?) / ↵2

sT (~b?) ⇠ ↵2
sA

1/3⇤2
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Gluon Saturation
• The inverse saturation scale defines a correlation length

in the transverse plane over which the color fields are 
correlated.

1/Qs

• The color fields over short distances is qualitatively 
different from the fields over longer distances:

kT

kT ΦWW

"Qs

"1!kT
"kT ln

Qs
kT

Figure 3.16: Plot of the phase-space distribution kTφWW (kT ) using (3.104). The kT ∼
Qs behavior in the saturation regime is given by (3.107) (blue dashed curve); the large-
kT asymptotics are given by (3.105) (red dash-dotted curve); and a smooth interpolation
between the two limits has been constructed by hand (black solid curve). The interpolation
should only be considered schematic; a calculation of the next subleading term of (3.105),
for example, demonstrates that the full solution should approach the 1/kT asymptotics from
above.

e.g. [64–66,68,114–118]). The nonlinear effects of multiple gluon scattering have shifted the

low-kT gluons up in momentum and depleted the distribution in the far infrared. The satu-

ration scale Qs is a measure of the density of the system, scaling with the number of charges

as Q2
s ∝ T (b) ∼ A1/3, so by increasing the density of charges, we further deplete the infrared

region. This leads to a profound conclusion: since Qs emerges as a dynamical infrared cut-

off that increases with the density of the system, for a system of sufficient density that

Q2
s # Λ2

QCD, the physics of high-energy scattering can be made perturbative! Indeed, cal-

culations of the scale at which the coupling αs runs in typical high-energy collisions confirm

that they are proportional to Qs (see, e.g. [119]). Thus, the emergent physics of saturation

provides a well-defined resummation of QCD itself in which high-energy scattering becomes

perturbative and classical fields dominate:

A1/3 # 1 Q2
s # Λ2

QCD αs(Q
2
s)$ 1 α2

sA
1/3 ∼ O (1) . (3.108)

Thus the CGC approach, characterized by the Glauber-Gribov-Mueller and McLerran-

Venugopalan formalisms, is a powerful tool which can bring high-energy, high-density

124

➡  At short distances (large transverse momentum), the 
gluon field is correlated and matches the field of a single 
color source.

➡  Over long distances (low transverse momentum), the
gluon field is uncorrelated and screened.

• The saturation scale dynamically cuts off the gluon 
distribution in the IR.

• If the charge density is high enough that     
then the process can be calculated perturbatively.

Q2
s � ⇤2
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The Power of the High-Density Limit
Can we use the high-density quasi-classical limit to simplify the TMD quark 
correlator?

�↵�(x,~k?) =

Z
d

2�
r

(2⇡)3
e

ik·r hA(P )|  ̄�(0)U [0, r] ↵(r) |A(P )i

• Quark correlator of a heavy nucleus in the MV model:

Regard the nucleus as a distribution of nucleons with some light-front wave function:

|A(P )i =
Z

d⌦ N (p1, · · · , pn) |N1(p1) · · ·NA(pA)i

If the quark field acts on one nucleon            , the rescattering takes place 
predominantly on the other             spectator nucleons.

|N(p)i
(A� 1)

• Up to corrections of                             it is possible to separate the 
wave function of the nucleons, the quark distribution of a nucleon, and the 
perturbatively calculable gauge link!

O(↵2
s) ⇠ O(A�1/3)
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The Pieces of the Puzzle

⇥hN(p0)|  ̄�(0)u[0, r] ↵(r) |N(p)i ⇥ hA� 1| U [0, r] |A� 1i

⇥hN(p0)|  ̄�(0)u[0, r] ↵(r) |N(p)i ⇥ hA� 1| U [0, r] |A� 1i

hAi  ̄�(0)U [0, r] ↵(r) |Ai ⇡
Z

d⌦d⌦0  N (⌦) ⇤
N (⌦0)

P

q

P

p p′

k′ k

k′ − q

ψ ψ∗

Light-front wave functions
of the nucleons

Quark correlator of 
a nucleon up to    O(↵s)

Gauge link calculated
in the MV model

hA|  ̄�(0)U [0, r] ↵(r) |Ai ⇡
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Quasi-Classical Factorization
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Spin-Orbit Coupling in an
Unpolarized Nucleus
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Polarized Nucleons in an Unpolarized Nucleus

The Wigner distribution          and nucleonic quark correlator         are            
spin density matrices.  

This expansion makes the nucleon spin state transparent: it can either be 
unpolarized (U), longitudinally-polarized (L), or transversely-polarized (T).

W
�

0
�

= W
unp

[1]
�

0
�

+ ~W
pol

· [~�]
�

0
�

W (p, b, S) = W
unp

(p, b) + ~S · ~W
pol

(p, b)

~W
pol

= 1
2Tr[W ~�]

Wunp = 1
2Tr[W ]

• In the nucleon rest frame, they can be expanded in a basis of Pauli matrices 
and the unit matrix:

With these components, you can construct a nucleon in any spin state:

W�0� ���0 (2⇥ 2)

S S’

= +

+ +

U U L

T T

L

T Tx yx y
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Lorentz-Covariant Spin Structure

You can generalize S to a four-vector and use it 
to boost these expressions out of the rest frame:

W (p, b, S) = W
unp

(p, b)� S
µ

Wµ

pol

(p, b)

1
2W�

0
�

�
��

0 = W
unp

�
unp

�W
pol µ

�µ

pol

1
2W�

0
�

�
��

0 = W
unp

�
unp

+ ~W
pol

· ~�
pol

In the nucleon rest frame, the trace over spin indices becomes a sum over the 4 
independent spin configurations                      : (U,L, T x, T y)

�
↵�

(x,~k?) =
2A

(2⇡)5

Z
d

2+
p d

2�
b d

2
r d

2
k

0
e
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k

0
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Then the quasi-classical factorization formula becomes:

⇥
⇣
W

unp

(p, b)�
unp

(x̂,~k0?)�W

pol µ

(p, b)�µ
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⌘
S

[1�
,b

�]
(rT ,bT )

Sµ = (0, ~S) !
⇣
SL

p+

m ,�SL
p�

m , ~S?

⌘

Sµ = (0, ~S) !
⇣
SL

p+

m ,�SL
p�

m , ~S?

⌘
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Symmetries of the Nucleus

Since the Wigner distribution is built from only light-front wave functions, it has a 
high degree of symmetry:

• Discrete symmetries like PT

• No dependence on the collision axis (virtual photon)

• Should possess full 3D rotational symmetry in the rest frame

Using all these symmetries, we should be able to strongly constrain the functional 
form of the Wigner distribution.

• Gets integrated with other factors possessing 2D rotational symmetry about
the beam axis (virtual photon)

• What kind of spin-orbit coupling is permitted by these symmetries?

... but there’s a catch.

W�0�(p, b) =
1

2(2⇡)3

Z
d2+(p� p0)p

p+p0+
e�i(p�p0)·b N

� (p) N⇤
�0 (p0)
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Covariant Light-Front Perturbation Theory

Carbonell, et. al, Phys. Rept. 300 (1998)
A proper description of rotations in the light-front formalism 
requires “covariant light-front perturbation theory”

• To preserve Lorentz covariance, you must rotate the quantization axis as well!

• In general, relativistic LFWF depend on the direction of the quantization axis.

• Keeps the quantization axis arbitrary instead of using the    axis .z

Light-front wave functions are quantized at fixed “light-front time” x

+ = ct+ z

• Even though they don’t depend on the collision axis, they do
 have a built in preferred axis of their own (z)

• These wave functions are optimized for describing high-energy states with a
 preferred collision axis: boost-invariant, 2D rotationally invariant, etc.

• 3D rotations are “dynamical”: they couple to the interaction Hamiltonian, 
changing the particle content of the state and requiring an exact solution.

➡ They do not possess 3D rotational invariance in the kinematic variables....
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Nucleons with Non-Relativistic Motion

But in the non-relativistic limit             , the light-front quantization condition 
reduces down to the equal-time quantization condition:

c ! 1

(ct+ ~x · n̂ = const) ! (ct = const)

➡ Nonrelativistic LFWF are equivalent to equal-time WF, which have no 
dependence on the special direction    .n̂

If the nucleons move non-relativistically in the nucleus, then their WF do possess 
3D rotational invariance in the nuclear rest frame!

In the non-relativistic limit:

W�0�(~p,~b) =
1

2(2⇡)3m

Z
d3(p� p0) e+i(~p�~p0)·~b N

� (~p 2) N⇤
�0 (~p 02)

~p =
⇣
~p? , (Am)( p+

P+ � 1
A )

⌘
~b =

⇣
~b? , �P+b�

Am

⌘
where the vector quantities are

Carbonell, et. al, Phys. Rept. 300 (1998)
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Parameterizing the Wigner Distribution
From 3D rotational invariance, parity, and time-reversal invariance:

W (~p,~b, ~S) = Wunp[~p
2,~b 2, (~p ·~b)2] + ~S · (~b⇥ ~p)WOAM [~p 2,~b 2, (~p ·~b)2]

(~L · ~S) spin-orbit coupling!

The Wigner distribution is integrated over impact 
parameters with the gauge factor, which possesses 
2D rotational invariance:

Z
d2b W (~p,~b, ~S) S(bT )

• Without loss of generality, we can replace bi?b
j
? ! 1

2b
2
T �

ij

W (~p,~b, ~S) ) Wunp[p
2
T , b

2
T ; p

2
z, b

2
z]� bz (~p?⇥~S?)WOAM [p2T , b

2
T ; p

2
z, b

2
z]

The maximum spin-orbit structure of an unpolarized nucleus is then:

and we have the dictionary

pz = (Am)( p+

P+ � 1
A ) bz = �P+b�

Am
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Spin-Orbit Structure in the Quark Distribution

W (~p,~b, ~S) ) Wunp[p
2
T , b

2
T ; p

2
z, b

2
z]� bz (~p?⇥~S?)WOAM [p2T , b

2
T ; p

2
z, b

2
z]

[Γ ]

U U U U U U

S S ′ U U T T

[Γ ] [Γ ]

Wunp (~L?·~S?)WOAM

In an unpolarized nucleus, the intermediate nucleons can only be unpolarized or 
transversely polarized

• Longitudinal polarizations do not survive the impact parameter integral

1
2Tr[� �+] = fA

1

1
2Tr[� �+�5] = 0

1
2Tr[� �+�j

?�
5] = ✏jiT

ki
?

Amh?A
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Only two leading-twist TMD quark distributions exist for an unpolarized nucleus:

Unpolarized quark distribution

No longitudinally-polarized quarks

Boer-Mulders function: (PT)-odd quark spin-orbit coupling
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Unpolarized Quark Distribution

One channel builds up the unpolarized 
quark distribution of the nucleons:

fN
1 ! fA

1 (Wunp)

A second channel generates transversely polarized 
nucleons with OAM, and their Sivers function builds 
up the unpolarized quark distribution:

(WOAM )f?N
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Wunp ⊗ fN1 WOAM ⊗ f⊥N
1T
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Boer-Mulders Distribution

One channel builds up the Boer-
Mulders function of the nucleons:

(Wunp)

Another channel generates transversely polarized 
nucleons with OAM, and their transversity or 
pretzelosity build up the Boer-Mulders function:

(WOAM )
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OAM and TMD Mixing

 The mixing depends directly on the multiple rescattering on the spectator nucleons.

• If the gauge factor is replaced by 
unity, the mixing vanishes:

Z 1�

�1�
db� b� WOAM

�
(b�)2

�
= 0

• OAM provides the spin-orbit coupling; the gauge link provides the PT breaking.

fA
1 ⇠ (P+b�)WOAM ⌦ S[1�,b�]

(rT ,bT ) ⌦ f?N
1T

h?A
1 ⇠ (P+b�)WOAM ⌦ S[1�,b�]

(rT ,bT ) ⌦ hN
1

h?A
1 ⇠ (P+b�)WOAM ⌦ S[1�,b�]

(rT ,bT ) ⌦ h?N
1T

PT - odd

PT - evenPT - odd

PT - even

PT - reversing gauge factor

The presence of            spin-orbit coupling induces nontrivial mixing between the 
nuclear and nucleonic TMD’s.      

(~L · ~S)

• The mixing occurs between the PT - even and PT - odd sectors:

• Fundamentally different from other authors, who only have     
broadening effects.

pT Liang, et. al, Phys. Rev. D77 (2008)



Apr. 2, 2015 31 / 34Matthew D. Sievert

Implications for an EIC

A measurement of the      dependence of the nuclear TMD’s which deviates from 
simple broadening of the corresponding nucleonic TMD is an indication of OAM. 

pT

• If      and        are known, and      is measured, then the deviation of the nuclear
distribution from the nucleonic one is directly proportional to            . 
fN
1 f?N

1T fA
1

WOAM

• It would require extensive      coverage, but in principle such measurements are
possible at a future Electron-Ion Collider (EIC).  

pT

The same spin-orbit coupling                          is also responsible for the admixture 
of the transversity and pretzelosity into the nuclear Boer-Mulders function.

(~L? · ~S?)WOAM

• Once             is measured from the admixture of the Sivers function into the 
unpolarized quark distribution, this provides a prediction for the amount of
admixture present in the nuclear Boer-Mulders function.

WOAM

• In this way, measuring the mixing of TMD’s provides direct access to the orbital
angular momentum present in the nucleus.
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Assumptions and Context

The assumptions that lead to the possibility of TMD mixing required only the high-
density limit and non-relativistic nucleon motion.

• The high-density limit is a genuine resummation of QCD.  It should be valid not
only for a heavy nucleus, but for any hadronic system at high energies.

• The mixing present in a dense, non-relativistic system should also be present in
a dense relativistic system such as a high-energy proton.  There may also be 
additional mixing which is not present in the non-relativistic case.

• All of the real model dependence resides in the structure of the Wigner 
distribution, which is highly constrained by symmetry.

Any kind of spin-orbit coupling, together with a dense medium, generically leads to 
TMD mixing of this kind.

In a similar manner, one can imagine constructing the TMD’s of a dense proton from 
the calculated TMD’s of its valence quarks.  The proton should be highly relativistic 
and contain more structures than appeared here.
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Outlook and Ongoing Analysis
•  Use simple models for the Wigner distribution (e.g. static MV model, Gaussian 

distribution, etc.) to generate analytic curves for the form of the TMD’s with or 
without the presence of OAM.

•  Add to this the explicit TMD’s of a quark target to build up a fully analytic form for
the TMD’s of the nucleus, using only ingredients obtained from QCD.

➡  By varying the few parameters of the model (effective masses, charges,       )
this functional form may be useful for fitting the TMD’s of the dense proton.

Qs

•  Apply this methodology to all the leading-twist TMD’s of the heavy nucleus.

➡  A small number of spin-spin and spin-orbit coupling terms in the
Wigner distribution will be responsible for a large number of mixings.

➡  Once complete, this will provide a comprehensive profile of what complex 
spin-orbit structure can look like within QCD.

➡  This also includes the sector of gluon TMD’s.

•  Apply the same techniques to the “GTMD’s” - the “Mother Functions” which
generate both the TMD’s and the GPD’s
➡  The same spin-orbit couplings likely result in specific mixings in both the TMD

 and GPD sectors.
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Summary
•  The TMD quark distributions give additional

insight into hadronic structure, but they are
also sensitive to the gluon fields.

•  The high-density limit greatly simplifies the 
interaction with those gluon fields, bringing
them into the perturbative regime.

•  The TMD structure of a heavy nucleus
factorizes into the nuclear wave function,
the nucleonic TMD’s, and the calculable
gauge factor.

•  Spin-orbit coupling in the nucleus results in
generic mixing of the TMD’s, with the same 
coupling responsible for multiple mixings. 

•  This opens new doors to access spin-orbit
structure in hadronic systems, both 
theoretically and experimentally.
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